06-09-2014, 10:06 AM
At the launch of kittens Easter 2014 I bought some, aiming to test them. So, I opened 54 kittens Easter, randomly chosen from 100, and open 54 more companions, for tests. During the tests, the companions were exchanged as the need to prove something more recessive, hidden.
Then traits were found, and all six rounds of testing, many kittens "special size" born. I solved this data together, and they work to an understanding of the system.
Results
• This graph shows that the system is not random, because it prioritizes the 'normal' size, on the other.
Normal = 273
Teacup = 9
Toy = 16
Petite = 12
Bigger de Big = 4
MegaPuss = 4
Total = 318
Special size
• This graph shows that the choice of size is random.
Teacup = 9
Toy = 16
Petite = 12
Bigger de Big = 4
MegaPuss = 4
Total = 45
Summary Results
Normal size = 273
Special size = 45
Total = 318
My analysis of these data
To find out about how many kittens, normal size, were born for each 'special size', we must do the following calculation.
273 divided by 45 = 6
Thus, we can conclude that this analysis: Every 7 kittens born: 6 are normal size and 1 special size.
Something represented as: Normal / Normal / Normal / Normal / Normal / Normal / SPECIAL
The system sends normal size in the first 'six kittens', and on arriving at the 'kitten 7', it enters a different calculation, send a special size, something randomly chosen among 'special sizes' known.
Considerations
• This is a system rule. So it's not an individual rule by Avatar. Do not just take 7 kittens.
• This happens within the system. A circle of kittens 7, where 6 are normal, and 1 special.
• If 50 people have kittens born at the same time as the kitten sends information to the system, the kitten gets a queue. So the first falls in position 1, and receives normal size, then the second, falling in position 2, third in 3, until the seventh, when he gets a special size randomly. The process, back to position 1, and the circle starts all over again.
• So my new kitten box, may fall in position 3 of the system, and have a normal size, and another person may have a new box, and be lucky enough to fall into the 'position 7' of the system, and gain a special size.
Notes
Note: This analysis was ugly between days, April 29, 2014, the, June 5, 2014.
Note: We analyzed, kittens '318 'with Dad or Mom, started.
I can not say that this number is correct. But the sample of 318 is very good. And we are very close to uncover it.
What I try to prove is that, before the 'size' be 'random', there is a specific order. 6 Normal cats, and then a special, chosen randomly.
Data listed below:
1 Petite/Teacup/Normal/Normal/Normal/Normal (Pedigree)
2 Normal/Normal/Normal/Normal/Normal/Normal (Pedigree)
3 Normal/Normal/Normal/Normal/Normal (Pedigree)
4 Normal/Normal/Normal/Normal/Normal/Normal (Pedigree)
5 Normal/Normal/Normal/Normal/Normal/Normal (Pedigree)
6 Normal/Normal/Normal/Normal/Normal/Normal (Pedigree)
7 Normal/Normal/Toy/Normal/Normal/Toy (Pedigree)
8 Normal/Bigger de Big/Normal/Normal/Normal/Normal (Pedigree)
9 Normal/Normal/Normal/Normal/Normal/Normal (Pedigree)
10 Normal/Normal/Toy/Normal/Teacup/Normal (Pedigree)
11 Normal/Normal/Normal/Normal/Petite/Normal (Pedigree)
12 Normal/Normal/Normal/Normal/Normal/Normal (Pedigree)
13 MegaPuss/Normal/Normal/Normal/Normal
14 Toy/Normal/Normal/Toy/Normal/Normal (Pedigree)
15 Normal/Teacup/Normal/Normal/Normal/Toy (Pedigree)
16 Normal/Normal/Normal/Normal/Normal/Normal (Pedigree)
17 Normal/MegaPuss/Normal/Normal/Normal/Normal (Pedigree)
18 Normal/Normal/Normal/Normal/Normal/Normal (Pedigree)
19 Normal/Toy/Normal/Normal/Normal/Normal
20 Normal/Normal/Normal/Normal/Toy/Normal
21 MegaPuss/Normal/Normal/Normal/Bigger de Big (Pedigree)
22 Normal/Normal/Normal/Normal/Normal/Normal (Pedigree)
23 Normal/Normal/Normal/Normal/Normal/Normal (Pedigree)
24 Normal/Normal/Normal/Normal/Normal/Normal (Pedigree)
25 Normal/Normal/Normal/Normal/Normal/Normal (Pedigree)
26 Petite/Normal/Normal/Petite/Normal/Normal (Pedigree)
27 Normal/Normal/Normal/Normal/Normal
28 Normal/Normal/Normal/Normal/Normal/Normal (Pedigree)
29 Normal/Normal/Petite/Petite/Normal
30 Normal/Normal/Normal/Normal/Normal/Normal (Pedigree)
31 Normal/Normal/Normal/Normal/Teacup/Normal
32 Normal/Normal/Normal/Normal/Normal/Normal (Pedigree)
33 Normal/Normal/Normal/Normal/Normal/Normal
34 Normal/Teacup/Normal/Normal/Toy/Normal (Pedigree)
35 Petite/Normal/Normal/Normal/Normal/Normal (Pedigree)
36 Normal/Normal/Normal/Normal/Normal/Toy (Pedigree)
37 Normal/Normal/MegaPuss/Normal/Normal/Normal (Pedigree)
38 Petite/Normal/Toy/Normal/Normal/Normal (Pedigree)
39 Normal/Normal/Normal/Normal/Normal/Normal
40 Normal/Normal/Normal/Bigger de Big/Normal/Normal (Pedigree)
41 Normal/Normal/Normal/Normal/Toy/Normal (Pedigree)
42 Normal/Normal/Normal/Normal/Toy/Normal
43 Normal/Petite/Normal/Normal/Toy/Normal
44 Normal/Normal/Normal/Normal/Normal/Normal (Pedigree)
45 Normal/Petite/Normal/Normal/Normal/Toy (Pedigree)
46 Normal/Normal/Normal/Petite/Normal/Normal (Pedigree)
47 Bigger de Big/Normal/Teacup/Normal/Normal/Teacup (Pedigree)
48 Normal/Normal/Teacup/Normal/Normal/Normal (Pedigree)
49 Normal/Normal/Normal/Normal/Petite/Normal (Pedigree)
50 Normal/Normal/Normal/Normal/Normal
51 Normal/Toy/Normal/Normal/Normal/Normal (Pedigree)
52 Teacup/Normal/Normal/Normal/Normal/Normal (Pedigree)
53 Normal/Normal/Normal/Normal/Normal/Normal (Pedigree)
54 Normal/Normal/Normal/Normal/Normal/Normal (Pedigree)
Then traits were found, and all six rounds of testing, many kittens "special size" born. I solved this data together, and they work to an understanding of the system.
Results
• This graph shows that the system is not random, because it prioritizes the 'normal' size, on the other.
Normal = 273
Teacup = 9
Toy = 16
Petite = 12
Bigger de Big = 4
MegaPuss = 4
Total = 318
Special size
• This graph shows that the choice of size is random.
Teacup = 9
Toy = 16
Petite = 12
Bigger de Big = 4
MegaPuss = 4
Total = 45
Summary Results
Normal size = 273
Special size = 45
Total = 318
My analysis of these data
To find out about how many kittens, normal size, were born for each 'special size', we must do the following calculation.
273 divided by 45 = 6
Thus, we can conclude that this analysis: Every 7 kittens born: 6 are normal size and 1 special size.
Something represented as: Normal / Normal / Normal / Normal / Normal / Normal / SPECIAL
The system sends normal size in the first 'six kittens', and on arriving at the 'kitten 7', it enters a different calculation, send a special size, something randomly chosen among 'special sizes' known.
Considerations
• This is a system rule. So it's not an individual rule by Avatar. Do not just take 7 kittens.
• This happens within the system. A circle of kittens 7, where 6 are normal, and 1 special.
• If 50 people have kittens born at the same time as the kitten sends information to the system, the kitten gets a queue. So the first falls in position 1, and receives normal size, then the second, falling in position 2, third in 3, until the seventh, when he gets a special size randomly. The process, back to position 1, and the circle starts all over again.
• So my new kitten box, may fall in position 3 of the system, and have a normal size, and another person may have a new box, and be lucky enough to fall into the 'position 7' of the system, and gain a special size.
Notes
Note: This analysis was ugly between days, April 29, 2014, the, June 5, 2014.
Note: We analyzed, kittens '318 'with Dad or Mom, started.
I can not say that this number is correct. But the sample of 318 is very good. And we are very close to uncover it.
What I try to prove is that, before the 'size' be 'random', there is a specific order. 6 Normal cats, and then a special, chosen randomly.
Data listed below:
1 Petite/Teacup/Normal/Normal/Normal/Normal (Pedigree)
2 Normal/Normal/Normal/Normal/Normal/Normal (Pedigree)
3 Normal/Normal/Normal/Normal/Normal (Pedigree)
4 Normal/Normal/Normal/Normal/Normal/Normal (Pedigree)
5 Normal/Normal/Normal/Normal/Normal/Normal (Pedigree)
6 Normal/Normal/Normal/Normal/Normal/Normal (Pedigree)
7 Normal/Normal/Toy/Normal/Normal/Toy (Pedigree)
8 Normal/Bigger de Big/Normal/Normal/Normal/Normal (Pedigree)
9 Normal/Normal/Normal/Normal/Normal/Normal (Pedigree)
10 Normal/Normal/Toy/Normal/Teacup/Normal (Pedigree)
11 Normal/Normal/Normal/Normal/Petite/Normal (Pedigree)
12 Normal/Normal/Normal/Normal/Normal/Normal (Pedigree)
13 MegaPuss/Normal/Normal/Normal/Normal
14 Toy/Normal/Normal/Toy/Normal/Normal (Pedigree)
15 Normal/Teacup/Normal/Normal/Normal/Toy (Pedigree)
16 Normal/Normal/Normal/Normal/Normal/Normal (Pedigree)
17 Normal/MegaPuss/Normal/Normal/Normal/Normal (Pedigree)
18 Normal/Normal/Normal/Normal/Normal/Normal (Pedigree)
19 Normal/Toy/Normal/Normal/Normal/Normal
20 Normal/Normal/Normal/Normal/Toy/Normal
21 MegaPuss/Normal/Normal/Normal/Bigger de Big (Pedigree)
22 Normal/Normal/Normal/Normal/Normal/Normal (Pedigree)
23 Normal/Normal/Normal/Normal/Normal/Normal (Pedigree)
24 Normal/Normal/Normal/Normal/Normal/Normal (Pedigree)
25 Normal/Normal/Normal/Normal/Normal/Normal (Pedigree)
26 Petite/Normal/Normal/Petite/Normal/Normal (Pedigree)
27 Normal/Normal/Normal/Normal/Normal
28 Normal/Normal/Normal/Normal/Normal/Normal (Pedigree)
29 Normal/Normal/Petite/Petite/Normal
30 Normal/Normal/Normal/Normal/Normal/Normal (Pedigree)
31 Normal/Normal/Normal/Normal/Teacup/Normal
32 Normal/Normal/Normal/Normal/Normal/Normal (Pedigree)
33 Normal/Normal/Normal/Normal/Normal/Normal
34 Normal/Teacup/Normal/Normal/Toy/Normal (Pedigree)
35 Petite/Normal/Normal/Normal/Normal/Normal (Pedigree)
36 Normal/Normal/Normal/Normal/Normal/Toy (Pedigree)
37 Normal/Normal/MegaPuss/Normal/Normal/Normal (Pedigree)
38 Petite/Normal/Toy/Normal/Normal/Normal (Pedigree)
39 Normal/Normal/Normal/Normal/Normal/Normal
40 Normal/Normal/Normal/Bigger de Big/Normal/Normal (Pedigree)
41 Normal/Normal/Normal/Normal/Toy/Normal (Pedigree)
42 Normal/Normal/Normal/Normal/Toy/Normal
43 Normal/Petite/Normal/Normal/Toy/Normal
44 Normal/Normal/Normal/Normal/Normal/Normal (Pedigree)
45 Normal/Petite/Normal/Normal/Normal/Toy (Pedigree)
46 Normal/Normal/Normal/Petite/Normal/Normal (Pedigree)
47 Bigger de Big/Normal/Teacup/Normal/Normal/Teacup (Pedigree)
48 Normal/Normal/Teacup/Normal/Normal/Normal (Pedigree)
49 Normal/Normal/Normal/Normal/Petite/Normal (Pedigree)
50 Normal/Normal/Normal/Normal/Normal
51 Normal/Toy/Normal/Normal/Normal/Normal (Pedigree)
52 Teacup/Normal/Normal/Normal/Normal/Normal (Pedigree)
53 Normal/Normal/Normal/Normal/Normal/Normal (Pedigree)
54 Normal/Normal/Normal/Normal/Normal/Normal (Pedigree)